모집단에서 집단간분산과 집단내분산이 동일해지는 경우는?
[ QA ] CONTENTS 모집단내 각 집단의 모평균이 같을 때 입니다. 이 경우, 집단간분산과 집단내분산은 모집단의 분산을 추정합니다. 무한 모집단(population) 내 각 집단(group)의 크기도 무한대입니다. 모집단내 집단의 변동 모집단에서 무작위로 표본을 추출할 때, 그 표본이 충분히 크면, 즉, 표본의 크기가 무한대에 가까워지면, 그 표본은 모집단의 특성을 정확하게 반영합니다. 아찬가지로 모집단내 집단 간의 평균이 같을 때 […]
일원분산분석에서 F통계량, F검정통계량, F검정통계값의 관계는?
[ QA ] CONTENTS 귀무가설을 통해 , F통계량의 변수의 수를 줄여 F검정통계량을 구합니다. 여기서, 귀무가설은 알 지 못하는 모수에 대한 가설입니다. F검정통계량은 확률변수이며 정의된 확률분포함수로 표현합니다. 표본데이터를 통해, F검정통계량의 함수값인 F검정통계값을 구합니다. 일원분산분석에서 F통계량 일원분산분석에서의 F통계량을 함수로 보면 다음과 같이 표현할 수 있습니다. $$F(chi^2_B, df_B, chi^2_W, df_W) = dfrac{dfrac{chi^2_B}{df_B}}{dfrac{chi^2_W}{df_W}}= dfrac{dfrac{S_{B}^2}{sigma_{B}^2}}{dfrac{S_{W}^2}{sigma_{W}^2}}$$ 여기서, $chi^2_B$는 표본내 집단의 카이제곱: […]
t통계량, t검정통계량, t검정통계값의 관계는?
[ QA ] CONTENTS 귀무가설을 통해 , t통계량의 변수의 수를 줄여 t검정통계량을 구합니다. 여기서, 귀무가설은 알 지 못하는 모수에 대한 가설입니다. t검정통계량은 확률변수이며 정의된 확률분포함수로 표현합니다. 표본데이터를 통해, t검정통계량의 함수값인 t검정통계값을 구합니다. t통계량, t검정통계량, t검정통계값의 관계 t통계량을 함수로 보면 다음과 같습니다. $$t(bar{X}, mu, s, n) = dfrac{bar{X} – mu}{dfrac{s}{sqrt{n}}}$$ 여기서, $t$는 t통계량 $nu$는 자유도: $nu=n-1$ […]
표본통계량의 표집분포
Animation Figure 데이터종류 데이터 수집 데이터 종류 데이터종류 데이터 수집 데이터 종류 [Q&A] 스프레드시트에서 정리한 정형데이터에서 데이터를 속성에 따라 분류하면 범주형데이터, 순서있는 범주형데이터, 이산형데이터, 연속형데이터 이 중에서 이산형데이터와 연속형데이터는 수치로 나타나는 양적데이터입니다. 범주형데이터, 순서있는 범주형데이터, 이산형데이터, 연속형데이터 이 중에서 이산형데이터와 연속형데이터는 수치로 나타나는 양적데이터입니다. 데이터 프레임 데이터 프레임은 열과 행으로 구성된 테이블 형태의 데이터 구조로, […]
표본분산의 표집분포
Animation Figure CONTENTS Author Detail Publication Histroy DOI Citation Download Print 구글문서 Print 구글문서 Abstract 표본분산의 표집분포는 모집단에서 여러 번 표본을 추출해 각각의 표본분산을 계산한 결과로 이루어진 분포입니다. 확률변수가 정규분포를 따를 때, 표본분산에 자유도를 곱하고 모분산으로 나눈 새로운 확률변수는 카이제곱 분포를 따르며, 이는 모집단의 분산을 추정하는 데 활용됩니다. 표본분산을 계산할 때, 자유도를 고려해 표본 크기에서 […]
집단간분산과 집단내분산이 같다는 것은?
[ QA ] CONTENTS 범주형 원인변수에 의한 분산과 내재된 분산이 같다는 의미입니다. 신호와 노이즈의 양이 같다는 의미입니다. 집단간분산이 집단내분산보다 작은 구역은 중첩되어 있는 영역입니다. 큰 영역은 확실히 범주형 원인변수가 작동하는 영역입니다. 집단간분산과 집단내분산은 무엇? 집단간분산(Between-Group Variance)은 서로 다른 집단의 평균값 차이를 설명합니다. 즉, 각 집단의 평균이 전체 평균(또는 다른 집단의 평균)과 얼마나 차이가 나는지를 나타냅니다. […]
표본분산을 카이제곱으로 변환하는 이유는?
[ QA ] CONTENTS 카이제곱은 표준정규분포에서 유도된 확률분포를 가지기 때문입니다. 표본분산을 카이제곱변환하는 과정에서 자유도의 정보가 포함됩니다. 유사하게, 표본평균을 Z변환하는 과정에서 표본크기의 정보가 포함됩니다. 확률변수의 확률분포: 정규분포로 모델링 확률변수의 확률분포: 정규분포로 모델링 $$Y sim N(mu_Y, sigma^2_Y)$$ 여기서, $Y$는 확률변수 $N(mu_Y, sigma^2_Y)$는 $mu_Y$와 $sigma^2_Y$를 매개변수로 하는 정규분포 $mu_Y$는 확률변수 $Y$의 모평균 $sigma^2_Y$는 확률변수 $Y$의 모분산 확률변수의 확률밀도함수 […]
모분산을 알고 표본크기가 작은 경우, Z검정과 t검정 중, 어느 검정?
[ QA ] CONTENTS Z검정입니다. Z검정과 t검정은 확률변수가 정규분포를 따르거나 표본크기가 30이상인 경우에 사용합니다. 확률변수가 정규분포를 따르지 않고 표본크기가 30미만인 경우는 비모수검정을 사용합니다. Z검정은 모분산을 아는 경우에 사용 모분산이 알려진 경우에는 표본크기와 관계없이 Z검정을 사용합니다. 모분산을 알면 모집단의 실제 변동성을 직접 반영할 수 있습니다. 따라서 자유도에 따른 보정이 필요하지 않습니다. 그러나 모분산을 아는 경우는 현실적으로 […]
검정통계량(Test statistic)은 확률변수?
[ QA ] CONTENTS 네, 검정통계량은 확률분포를 가지는 확률변수입니다. 무작위 표본으로부터 계산되는 통계량이기 때문입니다. 검정통계량은 무엇? 검정통계량은 주어진 표본 데이터에서 계산되는 통계량 중 하나입니다. 이 통계량은 모집단의 모수를 추정하거나 가설을 검정하는 데 사용되어 검정통계량이라고 부릅니다. 검정통계량은 특정 확률변수를 검정의 종류에 따른 확률분포의 확률변수로 변환하는 식이며, 이는 표본의 구성이나 크기에 따라 달라집니다. 예를 들어, t검정에서 사용되는 […]
p값은 이항집합의 확률인가?, 연속적인 집합의 확률인가?
[ QA ] CONTENTS p값(p-value)은 연속적인 집합의 확률입니다. p값은 연속적인 집합의 확률입니다. p값은 관측된 데이터로 부터 구한 0에서 1사이의 실수입니다. 0에서 1사이의 실수는 주어진 누적분포함수(CDF)로 부터 구한 연속적인 집합의 확률입니다. p값은 관측된 데이터가 특정 통계 분포(예: 정규분포)에서 얼마나 극단적인지를 나타내는 값입니다. 귀무가설이 참이라는 가정 하에, p값은 “관측된 데이터보다 더 극단적인 통계량에 해당하는 확률공간의 원소들의 […]