DATA SCIENCE - p값 : 27
eISSN 0000-0000

[ DATA SCIENCE ]

확률변수

동전과 확률변수
12면체 주사위와 확률변수
표적과 이산형 확률변수
표적과 연속형 확률변수
동전과 확률변수
12면체 주사위와 확률변수
표적과 이산형 확률변수
표적과 연속형 확률변수

[Q&A]

  1. 딸기의 가치는 당도인가?
  2. 저온숙성은 딸기의 당도를 향상시키는가?
  3. 당도 측정도구에 적용된 척도는?
  4. 대응표본과 독립표본은 무엇이 다른가?
  5. 대응표본과 독립표본에서 새로운 확률변수를 확률변수값의 차이라고 할 때 어느 표본의 분산이 더 큰가?
  6. 차이평균의 귀무가설과 원점의 관계는?
  7. 표준편차는 단위가 될 수 있는가?
  8. t검정?

CONTENTS

Random variable

DataLink Research Group

DataLink Research Group, Seoul, Republic of Korea
Received Date: 2023-03-31, Revised Date: 2023-04-30, Accepted Date: 2023-05-30, Published Date: 2023-06-15
10.12972/DataLink.2024.s-11-1-3
DataLink Research Group. 2024. Data type. DataLink Library 2024:s-11-1-3.
Print

Abstract

확률변수의 예를 통해 다양한 유형과 그 특성을 이해할 수 있습니다. 로또복권의 등수는 범주형 확률변수로, 각 등수에 해당하는 확률값을 가지며, 동전 던지기는 이산형 확률변수의 예로, 결과의 확률이 동등하게 나뉩니다. 또한, 궁수의 실력은 과녁상에서 연속형 확률변수로 표현되어, 궁수의 실력을 확률적으로 모델링할 수 있습니다. 확률변수는 변수명, 변수값, 그리고 그 변수값에 대응하는 확률의 집합으로 정의되며, 이산형과 연속형 확률변수로 구분됩니다. 이산형 확률변수는 셀 수 있는 값들을 가지며 확률질량함수로 표현되고, 연속형 확률변수는 셀 수 없는 무한한 값들을 가지며 확률밀도함수로 표현됩니다. 이러한 확률변수들은 사건의 발생 확률을 수치적으로 예측하는 데 사용되며, 특정 조건에서의 사건 발생 가능성을 분석하는 데 중요한 도구로 활용됩니다.

Keywords

확률변수, 범주형, 이산형, 연속형

범주형 확률변수

동전던지기

동전던지기를 한 후 나오는 윗면은 범주형 확률변수라고 할 수 있습니다. 만일, 1과 0을 앞면과 뒷면에 써 놓은 동전의 동전던지기의 결과는 이산형 확률변수라고 할 수 있습니다. 동전을 던져서 나온 확률변수값은 0과 1 두 개이고 확률변수값에 각각 1/2을 확률로 할당 할 수 있습니다.

확률(probability)이 있다는 것은 확률을 할당할 사건(event)이 있다는 것을 전제합니다. 예를 들어 , 동전을 던져서 윗면의 숫자를 관측한다는 시행(trial)에서 시행의 결과를 사건(event)으로 정의합니다.

시행에 나올 수 있는 더 이상 나눌 수 없는 모든 사건(event)을 표본(sample), 표본점(sample point), 기저사건(elementary event)이라고 합니다. 이 표본의 집합을 표본공간(sample space)이라고 합니다.

동전던기기 시행에서는 “0이 나오는 사건”과 “1이 나오는 사건”이 기저사건(elementary event)이 됩니다. 그리고 “아무것도 안나오는 사건”은 확률이 0인 사건이며 불가능한 사건(impossible event)이라고 합니다. “0 또는 1이 나오는 사건”은 확률이 1인 사건이고 확실한 사건( sure event)이라고 합니다.

기저사건과 기저사건의 가능한 모든 합사건을 사건(event)이라고 할 수 있습니다. 그리고 사건의 집합을 사건공간(event space)이라고 합니다. 단 사건공간은 합집합 연산에 닫혀있어야 합니다. 동전던지기의 사건공간은 다음 하나의 공간으로 표현할 수 있습니다.

$\mathcal{F}$={공집합, {앞면}, {뒷면}, {앞면, 뒷면}}={{  }, {H}, {T}, {H, T}}=$\{\emptyset, \{H\}, \{T\}, \Omega\}$

사건에는 확률을 부여할 수 있습니다. 이렇게 사건에 확률을 부여하는 것을 확률측도라고 합니다. 여기서, 측도는 집합의 성질을 수치화하는 특수한 함수입니다.따라서  확률측도는 사건에 확률을 할당하는 함수입니다. 동전던지기에서의 확률측도는 다음과 같습니다.

$P\{\emptyset\}=0$, $P(\{H\})=\dfrac{1}{2}$, $P(\{ T\})=\dfrac{1}{2}$, $P(\{H,T\})=\dfrac{1}{2}$

동전의 한 면이 나올 확률을 $p$라고 하면 다른 한면의 확률은 $(1-p)$가 됩니다. 이렇게 배타적인 두 기저사건만을 가지는 시행을 베르누이 시행(Bernoulli try) 또는 베르누이 프로세스(Bernoulli process)라고 합니다.

확률변수값은 사건공간을 어떻게 정하냐에 따라 따릅니다. 그래서 사건공간을 $\sigma-\text{대수}$라고 부르기도 합니다. 사건이 정해지지 않았기에 $\sigma$표기를 사용하고 사건공간은 가산 합집합 연산에 닫혀 있기 때문에 대수라고 부릅니다. 정리하면, 가산 합집합 연산에 닫혀 있는 “기저사건의 집합”을 시그마대수라고 부릅니다.

  • 시행
    • 동전던지기
  • 확률공간(probability space): 표본공간$(\Omega)$, 사건공간$(\mathcal{F})$, 확률측도$(P)$
    • 표본공간(sample space, $\Omega$):
      • $\Omega$={앞면, 뒷면}=$\{H, T\}$
    • 사건공간(event space, sigma-algebra $\mathcal{F}$):
      • $\mathcal{F}$={공집합, {앞면}, {뒷면}, {앞면, 뒷면}}={{  }, {H}, {T}, {H, T}}=$\{\emptyset, \{H\}, \{T\}, \Omega\}$
    • 확률측도(probability measure, $P$):
      • $P\{\emptyset\}=0$, $P(\{H\})=\dfrac{1}{2}$, $P(\{ T\})=\dfrac{1}{2}$, $P(\Omega)=1$
  • 확률변수
    • 확률변수명: 동전던지기
    • 확률변수값: 앞면, 뒷면
    • 확률변수의 유형: 범주형

주사위던지기

동전던지기를 한 후 나오는 윗면은 범주형 확률변수라고 할 수 있습니다. 만일, 1과 0을 앞면과 뒷면에 써 놓은 동전의 동전던지기의 결과는 이산형 확률변수라고 할 수 있습니다. 동전을 던져서 나온 확률변수값은 0과 1 두 개이고 확률변수값에 각각 1/2을 확률로 할당 할 수 있습니다.

확률(probability)이 있다는 것은 확률을 할당할 사건(event)이 있다는 것을 전제합니다. 예를 들어 , 동전을 던져서 윗면의 숫자를 관측한다는 시행(trial)에서 시행의 결과를 사건(event)으로 정의합니다.

시행에 나올 수 있는 더 이상 나눌 수 없는 모든 사건(event)을 표본(sample), 표본점(sample point), 기저사건(elementary event)이라고 합니다. 이 표본의 집합을 표본공간(sample space)이라고 합니다.

동전던기기 시행에서는 “0이 나오는 사건”과 “1이 나오는 사건”이 기저사건(elementary event)이 됩니다. 그리고 “아무것도 안나오는 사건”은 확률이 0인 사건이며 불가능한 사건(impossible event)이라고 합니다. “0 또는 1이 나오는 사건”은 확률이 1인 사건이고 확실한 사건( sure event)이라고 합니다.

기저사건과 기저사건의 가능한 모든 합사건을 사건(event)이라고 할 수 있습니다. 그리고 사건의 집합을 사건공간(event space)이라고 합니다. 단 사건공간은 합집합 연산에 닫혀있어야 합니다. 동전던지기의 사건공간은 다음 하나의 공간으로 표현할 수 있습니다.

$\mathcal{F}$={공집합, {앞면}, {뒷면}, {앞면, 뒷면}}={{  }, {H}, {T}, {H, T}}=$\{\emptyset, \{H\}, \{T\}, \Omega\}$

사건에는 확률을 부여할 수 있습니다. 이렇게 사건에 확률을 부여하는 것을 확률측도라고 합니다. 여기서, 측도는 집합의 성질을 수치화하는 특수한 함수입니다.따라서  확률측도는 사건에 확률을 할당하는 함수입니다. 동전던지기에서의 확률측도는 다음과 같습니다.

$P\{\emptyset\}=0$, $P(\{H\})=\dfrac{1}{2}$, $P(\{ T\})=\dfrac{1}{2}$, $P(\{H,T\})=\dfrac{1}{2}$

동전의 한 면이 나올 확률을 $p$라고 하면 다른 한면의 확률은 $(1-p)$가 됩니다. 이렇게 배타적인 두 기저사건만을 가지는 시행을 베르누이 시행(Bernoulli try) 또는 베르누이 프로세스(Bernoulli process)라고 합니다.

확률변수값은 사건공간을 어떻게 정하냐에 따라 따릅니다. 그래서 사건공간을 $\sigma-\text{대수}$라고 부르기도 합니다. 사건이 정해지지 않았기에 $\sigma$표기를 사용하고 사건공간은 가산 합집합 연산에 닫혀 있기 때문에 대수라고 부릅니다. 정리하면, 가산 합집합 연산에 닫혀 있는 “기저사건의 집합”을 시그마대수라고 부릅니다.

  • 시행
    • 동전던지기
  • 확률공간(probability space): 표본공간$(\Omega)$, 사건공간$(\mathcal{F})$, 확률측도$(P)$
    • 표본공간(sample space, $\Omega$):
      • $\Omega$={앞면, 뒷면}=$\{H, T\}$
    • 사건공간(event space, sigma-algebra $\mathcal{F}$):
      • $\mathcal{F}$={공집합, {앞면}, {뒷면}, {앞면, 뒷면}}={{  }, {H}, {T}, {H, T}}=$\{\emptyset, \{H\}, \{T\}, \Omega\}$
    • 확률측도(probability measure, $P$):
      • $P\{\emptyset\}=0$, $P(\{H\})=\dfrac{1}{2}$, $P(\{ T\})=\dfrac{1}{2}$, $P(\Omega)=1$
  • 확률변수
    • 확률변수명: 동전던지기
    • 확률변수값: 앞면, 뒷면
    • 확률변수의 유형: 범주형

활쏘기

궁수가 과녁에 화살을 쏘는 행위를 할 때 궁수가 쏜 화살은 과녁의 나누어진 면적에 들어가거나 과녁의 중심에서 떨어진 거리를 나타낼 수 있습니다. 이 때 궁수의 실력을 확률변수로 표현할 수 있습니다. 궁수의 점수는 궁수의 실력이고 확률변수로 모델링할 수 있습니다. 이렇게 관측된 확률변수값을 데이터라고도 합니다.

궁수의 데이터가 많을 수록 궁수의 실력을 보다 정확히 말할 수 있습니다. 궁수의 점수의 확률분포는 궁수의 실력을 반영합니다. 궁수의 점수의 기대값이 높다고 하더라도 그 궁수가 활쏘기 대회에서 우승한다고 단언할 수는 없습니다. 확률로 예측하는 것이 최선입니다. 만일 활쏘기 횟수가 적은 대회라면 더더욱 우승을 예측하기는 어려울 수 있습니다.

원형표적(target)은 총기가 만든 탄착군의 원의 면적으로 총기의 성능을 확률로 잘 설명할 수 있는 예입니다. 그래서 확률을 영어로 probability(가능성)뿐만아니라 stochastic(표적)으로도 표현합니다.

– 활쏘기의 기저사건(표본, sample, 표본점, sample point) : 노랑과녁에 맞는 사건, 빨강과녁에 맞는 사건, 파랑과녁에 맞는 사건, 검정과녁에 맞는 사건

아래의 예에서는 확률변수를 정하기 위해서 사건공간이 정의되었고 궁수라는 개체에서 특정한 개체 A가 특정되었습니다. 그리고 개체A의 활쏘기 실력을 예측하기 위해서 반복된 측정으로 A궁수의 실력을 확률로 표현하였고 이 확률을 고전적 확률의 정의로 “경험적 확률 (empirical probability)”이라고 부릅니다.

$$\text{경험적 확률}=\dfrac{사건이 발행한 횟수}{전체 실험한 횟수}$$

  • 시행
    • 활쏘기
  • 확률공간(probability space): 표본공간$(\Omega)$, 사건공간$(\mathcal{F})$, 확률측도$(P)$
    • 표본공간(sample space, $\Omega$):
      • $\Omega$={노랑, 빨강, 파랑, 검정}=$\{4, 3, 2, 1}$
    • 사건공간(event space, sigma-algebra $\mathcal{F}$):
      • $\mathcal{F}$={공집합, {노랑}. {빨강}, {파랑}, {검정}, 표본공간}={{  }, {4}, {3}, {2}, {1}, \Omega}$
    • 확률측도(probability measure, $P$):
      • $P\{\emptyset\}=0$, $P(\{\ text{짝수}\})=\dfrac{1}{2}$, $P(\{ \text{홀수}\})=\dfrac{1}{2}$, $P(\Omega)=1$
  • 확률변수: A궁수의 활쏘기
    • 확률변수명: A궁수의 활쏘기 점수
    • 확률변수값: 0, 1, 2, 3, 4
    • 확률변수의 유형: 범주형

로또복권 추첨

로또복권 추첨에서는 확률변수의 이름을 “로또복권의 등수”라 할 수 있습니다. 따라서 확률변수값을 미리 정해진 1등, 2등, 3등, 4등, 5등 그리고 꽝이라고 할 수 있습니다. “로또복권의 등수”는 범주형 확률변수입니다. 그리고 6개의 범주에 확률이 대응됩니다. 로또복권의 한 회차의 판매를 마감하면 각 등수에 대응되는 확률도 규정된 수식에 의해 부여됩니다.

기저사건은 로또복권의 가능한 모든 번호가 됩니다. 그리고 복권이 판매되면 전체상금이 결정되어 복권의 상금의 기대값도 계산할 수 있습니다. 

확률측도는 등수에 설계에 따라 미리 설계할 수 있고 함수로 표현할 수 있습니다.

고전적 확률의 정의

고전적 확률 경험적 확률 (Empirical Probability) 통계적 확률 (Statistical Probability) 빈도주의 확률 (Frequentist Probability)
정의 관찰된 데이터를 기반으로 계산된 실제 확률 통계적 모델을 통해 추정된 확률 무한히 반복되는 실험에서 사건이 발생할 비율
기반 실제 데이터 실제 데이터 + 확률 모델 이론적으로 무한히 많은 실험
수학적 표현 \( P(E) = \frac{\text{사건 } E \text{ 발생 횟수}}{\text{전체 실험 횟수}} \) 추정된 확률 값, 예: 최대우도추정 등 \( P(E) = \lim_{n \to \infty} \frac{\text{사건 } E \text{ 발생 횟수}}{n} \)
실용성 단순하고 실험 데이터에 직접 기반 미래 예측에 유용 이론적 기반이 강함
예시 주사위를 100번 던져 6이 나온 비율 기후 데이터를 분석해 비 올 확률 추정 공정한 동전을 무한히 던질 때 앞면 확률 50%

확률공간을 통한 확률의 정의

확률론(probability theory)에서는 확률공간(probability space)으로 확률(probability)을 설명합니다. 확률공간의 3요소는 표본공간(sample space), 시그마대수($\sigma$-algebra), 확률측도(probility measure) 입니다. 표본공간에서 나올 수 있는 단일 결과를 표본(sample)이라고 합니다. 이는 더 이상 나눌 수 없는 개별적인 사건의 결과입니다. 예를 들어, 동전을 한 번 던졌을 때 나오는 “앞”이나 “뒤”, 주사위를 한 번 던졌을 때 나오는 특정 숫자(예: 3)가 표본입니다. 표본공간의 표본은 각각 고유한 결과를 나타내며, 확률적 사건을 정의하는 기본 단위입니다. 표본공간에서의 표본을 표본점(sample point)이라고 부르기도 합니다.

확률공간의 3가지 요소

확률공간(probability space)은  표본공간(sample space, $\Omega$), 시그마대수($\sigma$-algebra), 확률측도(probability measure, $P$)로 구성됩니다.

  1. 표본공간은 가능한 모든 단일 결과인 표본들의 집합입니다.
  2. 시그마대수는 표본공간($\Omega$)의 부분집합들을 원소로 하는 집합으로, 이 부분집합을 사건(event)이라고 부릅니다. 따라서 시그마대수를 사건을 원소로 하는 집합이라고 할 수 있습니다. 시그마대수는 표본공간 위에서 정의할 수 있는 여러 가지 선택 가능한 집합의 모임으로, 목적에 따라 사건을 선택하여 구성할 수 있습니다. 시그마대수는 확률을 정의할 수 있는 사건의 범위를 설정하는 도구라고 할 수 있습니다. 가장 큰 시그마대수에는 표본공간의 모든 부분집합을 포함하는 멱집합이 있습니다. 그리고 특정한 사건들에 대한 정보만 필요할 경우, 더 작은 시그마대수를 구성할 수 있습니다. 예를 들어, 주사위를 던질 때 짝수와 홀수만을 고려한 시그마대수를 만들 수 있습니다. 시그마대수는 여집합, 가산 합집합, 그리고 결과적으로 가산 교집합에 대해 닫혀 있어야 합니다. 시그마대수는 사건공간(a space of events, $\mathcal{F}$)이라고 부르기도 합니다.
  3. 확률측도는 사건에 확률을 할당하는 함수입니다.
동전과 주사위에서의 표본공간과 표본

수치형 변수, 수치형 확률변수, 상수

수치형 변수

변수는 정해지지 않아 변하는 수 또는 변하는 것을 의미합니다. 변수는 변수명과 변수값으로 구성되며 변수명은 수(數)를 대신하는 대수(代數)를 표현하는 경우, 보통 $x, \, y, \, z$와 같이 뒤 쪽의 영문 소문자를 이용해서 표현합니다. 변수값은 자연수, 정수, 실수, 복소수 등의 수체계를 이루는 수(number)나 문자(character), 또는 수와 문자의 결합 등 다양한 형태를 가집니다. 변수값의 속성이 수치를 나타내는 경우, 이때의 변수값을 변량(variate)이라고 합니다. 정리하면, 변량은 수치로 실현되는 변수값을 의미합니다. 변량의 실현값은 간격척도나 비례척도가 적용된 관측도구로 측정된 양적 데이터입니다.

수치형 확률변수

확률변수는 변수의 의미에 더하여 변수값이 확률을 가지는 변수입니다. 수치형 확률변수에는 이산형과 연속형 확률변수가 있습니다. 범주형이나 수치형의 이산형 확률변수의 경우, 확률변수값은 확률질량을 가집니다. 수치형 확률변수에서 연속형 확률변수의 경우는 확률질량으로 확률을 표현하 수 없고 확률밀도로 표현합니다. 확률변수는 변수이지만 특정 실험이나 관측을 통해 확률변수가 구체적인 값을 가지게 되면 상수처럼 다루어집니다. 예를 들어, 동전을 실제로 던져서 앞면이 나왔다면, 그 순간 확률변수는 ‘앞면’이라는 구체적인 값으로 고정됩니다. 확률변수에서 확률이 표현되는 변수값의 집합을 지지집합(support)이라고 부릅니다. 그리고 확률변수는 고유한 확률분포를 가집니다. 확률변수를 무작위변수(random variable)이라고 부르는 이유는 무작위로 변수값이 정해지면 고유의 확률분포가 나타나기 때문입니다. 같은 이유로 변수는 확률분포가 정해지지 않은 확률변수라고 할 수 있습니다.

상수

상수(constiant)는 항상 일정하여 변하지 않는 값 또는 변하지 않는 것을 의미합니다. 상수는 상수명과 정해진 수인 상수값으로 구성됩니다. 수학적 상수의 대표적인 예로는 원주율($\pi, 3.14159\cdots$)과 자연상수($e, 2.71828\cdots$)가 있고 없음과 있음을 나타내는 0과 1이 있습니다. 물리적 상수의 대표적인 예로는 광속(${\rm C}, \text{약}2.998\times 10^8 {\rm m/s}$)과 플랑그상수(${\rm h}, \text{약}6.626\times 10^{-28} {\rm Js}$) 등이 있습니다.

확률변수의 성질

확률변수(random variable)는 확률을 가지는 변수입니다. 변수이기 때문에 어떤 값을 가질지는 모르지만 변수값에 따라 나올 가능성, 즉 확률(probability)이 정해져 있는 변수를 확률변수라고 합니다. 예를 들어 로또복권은 등수에 따라서 각각 다른 확률을 가지게 됩니다. 따라서 등수는 확률변수입니다. 확률변수를 표현하려면 확률변수명을 정하고 확률변수값에서의 확률분포를 정합니다.

동전던지기라는 시행으로 생성된 표본공간은 앞면과 뒷면입니다. 동전을 던져서 나온 윗면은 범주형 확률변수명이고 확률변수값은 앞면과 뒷면입니다. 따라서 척도로는 앞면과 뒷면이라는 명목을 가지는 명목척도가 사용됩니다. 주사위도 마찬가지로 6면을 1에서 6까지의 숫자로 표시하였을 때 “주사위 던지기”라는 시행에서 표본공간은 1, 2, 3, 4, 5, 6의 숫자이며 이는 바로 확률변수값으로 사용할 수 있습니다. 그리고 이 확률변수는 수치형(양적 데이터) 중에서 연속형이 아닌 이산형 확률변수입니다. 그리고 척도로는 수식계산이 가능한 간격척도가 사용됩니다.

확률변수를 정리하면 다음과 같습니다.

– 확률을 가지는 변수 : 특별히, 연속형 확률변수의 경우는 구간이 주어져야 확률을 가짐. 즉, 점에서의 확률은 0
– 시행(Trial)을 해서 어떤 사건이 나타났는지 보고  값이 정해지는 변수
– 고유의 확률분포를 가지는 변수이며 따라서 시행을 무한번 반복하여 나타난 시행결과들의 평균을 구하면 어떤 값, 즉 기대값에 수렴하는 변수

확률변수(random variable, stochastic variable, 確率變數)는 알파벳 대문자로 표기합니다. 아래 첨자로 확률변수를 구분하기도 합니다.

$$X, \, Y, \, Z$$
$$X_1, \, X_2, \, X_3$$

한 확률변수의 값(Value of random variable)은 확률변수에서 사용한 알파벳의 소문자를 사용합니다. 그리고 구분자는 아래첨자를 사용합니다.

$$x_1, x_2, x_3, \cdots $$
$$x_{11}, x_{12}, x_{13}, \cdots$$

확률변수와 표본평균의 중심경향성

확률변수가 나타내는 확률분포가 중심경향성을 가진다면 그 확률변수는 상수와 변수의 성질로 분리하여 생각할 수 있습니다. 중심경향성이 클수록 개념적으로 그 중심이 나타내는 상수에 가깝다고 할 수 있습니다. 반대 개념으로 골고루 퍼져있으면 변수의 성질을 더 잘 나타낸다고 할 수 있으며 가장 균등하게 퍼진 상태를 엔트로피(무질서도)가 가장 높은 상태라고 표현합니다.

모집단에서 표본을 추출할 때 표본평균을 확률변수로 모델링합니다. 이 때 표본평균은 모집단 평균을 중심으로 하는 확률분포를 보이며 중심경향성을 가진다고 볼 수 있습니다. 표본평균의 상수적인 성질은 합성함수(함수의 함수)로 모델링하여 새로운 확률변수를 생성합니다. 표본평균이 나타내는 중심경향성은 중심극한정리로 정립됩니다.

변수와 확률변수의 유형

범주형 확률변수의 확률변수값은 질적속성을 나타내므로 질적 확률변수라고도 합니다. 이에 반해 확률변수값이 양적인 수치를 가지는 확률변수를 양적 확률변수라고 합니다. 양적 확률변수를 수치형 확률변수라고도 합니다. 양적 확률변수는 다시 이산형 확률변수와 연속형 확률변수로 나누어 집니다.

범주형(categorical)

범주형 변수의 변수값은 원소의 수가 유한한 집합인 유한집합으로 표현됩니다. 범주형 변수의 변수값은 수치가 아닌 기호나 언어로 표현하며 기호나 언어는 순서를 가질 수도 있습니다. 범주형 변수의 변수값은 명목척도나 순서척도를 적용한 관측도구에 의해서 실현되는 값입니다. 범주형 확률변수는 범주형 변수와 마찬가지로 표현되나 확률이 있는 변수값만이 확률변수값이 됩니다. 범주형 확률변수는 각 변수값에서의 확률이 존재합니다. 그리고 이 확률은 0에서 1사이의 양(크기)으로 표현할 수 있기 때문에 “확률질량”이라고 표현합니다. 따라서 범주형 확률분포는 확률질량함수(probability mass function, PMF)로 표현할 수 있습니다.

– 범주형 변수의 예 : 동전
동전을 바닥에 던져 관측하는 경우에는 가능한 변수값을 다음과 같은 집합으로 표현할 수 있습니다. 이 집합을 표본공간(sample space)이라고 합니다. 이 집합의 각각의 원소는 확률질량을 가질 수 있는 데 모든 확률질량의 합은 1이 됩니다.

$$\{\text{보이는 면, 안 보이는 면}\}$$

동전의 두 면에 기호를 적고 면에 적혀 있는 기호를 범주형 변수값으로 볼 수 있습니다.

$$\{\text{앞 면, 뒷 면}\}$$
$$\{\text{H, T}\}$$

– 범주형 변수의 예 : 육각주사위
육각주사위에 기호를 적고 바닥에 던져 윗면에 적혀 있는 기호를 변수값으로 할 수 있습니다. 육각주사위가 정육면체를 가진다면 각 원소는 같은 확률을 가진다고 가정할 수 있어서 확률변수라고 할 수 있으나 현실에서 특정한 육각주사위의 확률분포는 실험 조건을 정하고 확률실험을 반복하여 통계적 확률분포를 구해야 합니다.

$$\{\text{1면, 2면, 3면, 4면, 5면, 6면}\}$$
$$\{\text{A, B, C, D, E, F}\}$$

– 명목형 변수의 예 : 문항
설문의 문항에 대한 답을 범주형 변수값으로 할 수 있습니다.

$$\{\text{싫다, 좋다}\}$$
$$\{\text{동의하지 않는다, 동의한다}\}$$
$$\{\text{매우동의하지 않는다, 동의하지 않는다, 중간이다, 동의한다, 매우 동의한다}\}$$

이산형(discrete)

이산형 변수는 범주형 변수의 성질을 가지고 변수값은 수치입니다. 이산형 변수의 변수값은 수체계로 표현됩니다. 이산형 변수의 변수값은 유한집합 또는 셀 수 있는 무한집합으로 표현됩니다. 이산형 확률변수는 이산형 변수와 마찬가지로 표현되나 확률이 있는 변수값만이 이산형 확률변수가 됩니다. 그리고 확률을 범주형 확률변수와 마찬가지로 확률질량으로 표현합니다. 이산형 확률변수는 각 변수값에서의 확률은 존재하지만 연속적이지 않으므로 확률의 변화율은 존재하지 않습니다. 따라서 이산형 확률분포는 확률질량함수(probability mass function, PMF)로 표현할 수 있습니다.

– 이산형 변수의 예 : 동전과 수행
동전의 두 면에 수치를 적고 수치만큼의 간격을 이동하는 것과 같은 행위를 수행한다면 이산형 변수가 됩니다.

$$\{1, 2\}$$
$$\{-1, 0, 1\}$$

– 이산형 변수의 예 : 육각주사위와 수행
육각주사위의 각 면에 수치를 적고 시행결과에 따라 칸을 이동하는 게임을 하는 경우

$$\{\text{1, 2, 3, 4, 5, 6}\}$$
$$\{\text{1, 10, 100, 1,000, 10,000, 100,000}\}$$

이산형 변수에 적용하는 수체계

이산형 변수에 적용하는 수체계에는 유한집합과 셀 수 있는 무한집합이 가능합니다. 셀 수 있는 무한집합은 원소의 수가 무한 개이지만 셀 수 있는 집합입니다. 수체계에서는 자연수와 정수가 있습니다. 수체계에서 자연수는 다음과 같이 원소나열법으로 표현할 수 있습니다. $$\{1, 2, 3, \cdots \}$$

연속형(continuous)

연속형 변수의 변수값은 셀 수 없는 무한집합으로 표현됩니다. 연속형 변수의 변수값은 수치이며 수체계 중에서 실수(real number)나 복소수(complex number)로 표현됩니다. 연속형 확률변수는 연속형 변수의 성질을 가지며 확률변수값이 아닌 확률변수의 구간에서 확률을 가집니다. 연속형 확률변수는 각 변수값에서의 확률은 0이지만 확률의 변화율은 존재하며 이를 “확률밀도”라고 부릅니다. 따라서 연속형 확률분포는 확률밀도함수(probability density function, PDF)로 표현할 수 있습니다.

– 연속형 변수의 예 : 수은온도계
물의 어는 온도에서의 수은의 부피를 0으로 하고 기화하는 온도에서의 부피를 100으로 할 때 온도에 따라 나타나는 부피는 연속형 변수입니다.

$$\{ \text{C} \mid -40 \lt x \lt 80 \}$$

– 연속형 확률변수의 예 : 태양빛의 파장
태양에서 방사되는 빛의 파장을 오랜 기간 관측하여 평균을 내면 통계적 확률로 표현할 수 있는 데 태양빛에서 가장 많이 방사되는 빛의 파장은 노란색파장이고 파장에 따라 다른 강도를 나타냅니다. 이때 파장에 따라 강도를 표현한 것을 태양빛의 스펙트럼이라고 하며 파장을 확률변수로 하는 확률분포라고 할 수 있습니다.

연속형 변수에 적용하는 수체계

연속형 변수에 적용하는 수체계는 셀수없는 무한집합으로 표현됩니다. 셀 수 없는 무한집합은 원소의 수가 무한개이고 셀 수 없는 집합입니다. 수체계에서는 실수와 복소수가 있습니다.

범주형 확률변수

범주형 확률변수(nominal random variable)는 확률실험에서 개체가 발생하는 범주에 하나의 확률값(확률질량)을 가집니다. 범주형 확률변수도 고유한 확률분포를 가집니다. 범주형 확률변수값은 기호나 단어입니다. 기호는 크기나 순서의 의미가 없는 숫자일 수도 있습니다. 한편, 기호나 단어가 순서를 나타낼 수 있고 범주를 순서에 따라 정렬할 수 있습니다. 이때 기호나 단어는 순서를 나타내는 기호나 단어를 사용합니다. 그리고 순서를 나타내는 범주를 수준(level)이라고도 합니다. 예를 들면, 과녁, 한우등급 등입니다.

범주형 확률변수의 확률분포 : 확률질량(probability mass)으로 표현

확률질량함수 $f(x)$는 범주형 확률변수 $X$가 $x$를 변수값으로 가질 때의 확률입니다.

$$f(x)=P(X=x)$$

모든 $x$에 대한 $f(x)$의 합은 1입니다.

$$\sum\limits_{{\rm all} \,\, x}f(x)=1$$

확률의 공리에 따라 0에서1까지의 범위를 갖습니다.

$$0 \leq f(x) \leq 1$$

이산형 확률변수

확률변수 $X$의 $R_X$가 유한집합 또는 셀 수 있는 무한집합의 경우, 확률변수, $X$를 이산형 확률변수(discrete random variable)라고 합니다.

이산형 확률변수의 확률분포 : 확률질량함수 (probability mass function)와 누적분포함수(cumulative distribution function)로 표현

확률질량함수 $f(x)$는 확률변수 $X$가 $x$를 변수값으로 가질 때의 확률입니다.

$$f(x)=P(X=x)$$

모든 $x$에 대한 $f(x)$의 합은 1입니다.

$$\sum\limits_{{\rm all} \,\, x}f(x)=1$$

확률의 공리에 따라 0에서1까지의 범위를 갖습니다.

$$0 \leq f(x) \leq 1$$

연속형 확률변수

확률변수 $X$ 의 $R_X$가 셀 수 없는 무한집합의 경우, 확률변수 $X$를 연속형 확률변수(continuous random variable)라고 합니다.

연속형 확률변수의 확률분포 : 확률밀도함수(probability density function)와 누적분포함수(cumulative distribution function)로 표현

확률밀도 함수 $f(x)$는 확률변수 $X$가 변수값 $x$에 대해 밀집된 정도를 나타내는 함수입니다. 확률밀도함수를 수식으로 나타내면 다음과 같으며, 여기서 $X$는 연속형 확률변수이고 $a$와 $b$는 상수입니다.

$$P(a\lt X\lt b)=\int_a^b f(x)dx$$

확률밀도함수는 양의 함수여야 합니다.

$$0 \leq f(x)$$

$-\infty$에서 $+\infty$까지 확률밀도함수를 적분했을 때의 값은 1이 됩니다.

$$\int_{-\infty}^{\infty}f(x)dx=1$$

연속형 확률변수 $X$가 어떤 특정한 값을 가질 확률은 0입니다.

$$𝑃(𝑋=𝑥)=0$$

따라서, 지지집합(support) 원소인 $a$, $b$에서 다음의 4가지 확률이 같습니다. 즉, 연속형 확률변수의 확률값은 확률변수의 구간의 등호에 영향을 받지 않습니다.

$$𝑃(𝑎 \lt 𝑋 \lt 𝑏)=𝑃(𝑎 \leq 𝑋 \lt 𝑏)=𝑃(𝑎 \lt 𝑋 \leq 𝑏)=𝑃(𝑎 \leq 𝑋 \leq 𝑏)$$

범주형 확률변수의 기대비율

범주는 개체를 같은 속성으로 묶은 것입니다. 또는 같은 속성으로 개체의 연속형 속성의 구간을 나눈 것입니다. 각 범주형 확률변수값은 빈도수의 비율이나 확률을 나타냅니다. 그리고 범주형 확률분포는 고유한 분포를 나타냅니다. 범주형 확률변수는 숫자일 필요는 없습니다. 기호나 단어여도 됩니다. 예를 들면, 과녁, 한우등급 등입니다. 한편, 범주형 확률변수값에 대응하는 확률은 빈도수 또는 빈도수의 비율로 대치할 수도 있습니다. 각 범주의 빈도수와 확률(빈도수의 비율)은 수치로 나타나는 유일한 범주의 속성입니다. 범주형 확률변수의 예에는 “서울시민의 성별”이 있습니다. “서울시민의 성별”은 각 국민을 성별이라는 속성에 따라 “남”과 “여”라는 범주로 묶고 각 범주가 확률을 가지므로 범주형 확률변수라고 할 수 있습니다. 여기서, “서울시민의 성별”이라는 확률변수는 “서울시민”이라는 조건하에서 “성별”이라는 범주형 확률변수는 “남”과 “여”라는 확률변수값을 가지며 두 확률변수값은 각각의 확률(빈도수의 비율)을 가집니다.

확률변수값의 기대비율

범주형 확률변수($X$)의 실현값(realized value, x)을 각 범주명(group name)으로 하면 범주형 확률변수를 다음과 같이 표현할수 있습니다.

$$X=\{g_1, g_2, \cdots, g_n \}$$

여기서, $X$는 범주형 확률변수 또는 표본공간(sample space)
$g_1, g_2, \cdots, g_n$ 은 범주(group)

$n$은 확률변수값의 수

범주형 확률변수값인 각 범주는 대응하는 확률질량을 가지고 있습니다.

$$P(g_i)=p_i$$

여기서, $p(g_i)$는 $g_i$범주의 확률질량
$p_i$는 $i$번째 범주의 확률질량

만일, 한 사건(event)를 $A$라 하고 $A$사건이 안 일어나는 사건을 $A^C$라 하면 사건과 그 사건의 여사건을 확률변수값으로 가지는 범주형 확률변수라고 할 수 있습니다. 이때 두 범주의 기대비율의 합은 1입니다. 연속형 속성의 구간을 나누어 범주를 만든 경우는 기대비율을 범주의 경계점으로 볼 수 있습니다.

$${\rm E}[P(A)]+{\rm E}[P(A^C)]=p+(1-p)=1$$

여기서, ${\rm E}[P(A)]$는 A사건이 일어나는 기대비율의 기대값이고 값은 $p$

이때 두 범주의 비를 odds(오즈)라고 합니다.

$$odds=\dfrac{p}{1-p}$$

2개 범주가 있는 경우 기대비율의 경계의 기대값과 분산

명목이나 순서로 구분되는 범주가 2개 있는 경우, 각 범주는 각 범주에서 발생하는 개체의 발생비율의 비율은 실수로 표현할 수 있습니다. 더 나아가 두  범주의 기대비율의 경계인 $p$ 또는 $1-p$는 0과 1사이 실수의 한 점(point)으로 나타납니다. 이 점은 확률변수로 볼 수 있습니다. 따라서 기대값과 분산을 가집니다.

$p$의 기대값은

$$\rm{E}[P]=p$$

$p$의 분산은

$$\rm{Var}[P]=p(1-p)$$

확률변수 속성, 이산형과 연속형 비교

연속형 변수의 경우 변수값의 실현은 비례척도를 적용한 관측도구에 의해 나타납니다. 따라서 연속형 확률변수은 기대값과 분산은 의미가 있습니다. 하지만 이산형 확률변수의 경우에는 비례척도가 적용된 관측도구로 구한 실현값(realized value)은 기대값과 분산이 의미가 있지만 간격척도가 적용된 관측도구를 사용한 경우에는 위치를 나타내는 기대값은 의미가 있지만 분포의 양을 나타내는 분산을 구할 때는 기준의 위치와 분산은 크기를 반드시 고려해야 합니다.

확률변수값의 평균과 확률변수의 기대값

확률변수는 고유한 확률의 분포를 가지고 있으므로 확률변수를 변수뿐만 아니라 범주로도 볼 수 있습니다. 따라서 범주의 속성을 나타내는 측도(measure)로 확률변수의 확률분포를 설명할 수 있습니다. 확률분포의 중심위치인 평균과 평균으로부터 얼마만큼의 양만큼 흩어져 있는지를 나타내는 분산은 측도(measure)라고 할 수 있습니다. 확률변수의 평균은 확률분포의 중심위치이고 0의 분산을 가지는 범주를 의미하기도 합니다.

확률변수($X$)의 실현값(realized value, x)의 평균(mean)의 표기는 그리스문자 $\mu$입니다.

확률변수($X$)의 기대값(expected value)은 ${\rm E}[𝑋]$로 표기합니다.

그리고 실현된 확률변수값($x$)의 평균과 그 확률변수($X$)의 기대값(${\rm E}[𝑋]$)은 같습니다.

$$\mu_X={\rm E}[X]$$

이산형 확률변수일 때 확률변수의 기대값

$${\rm E}[X]=\sum_{\text{all X}}xf(x)$$

연속형 확률변수일 때 확률변수의 기대값

$${\rm E}[X]=\int_{-\infty}^{\infty}xf(x)dx$$

확률변수값의 평균과 확률변수의 분산

확률변수의 분산은 기준점으로 부터 확률변수값이 흩어진 정도를 나타내는 측도(measure)입니다. 만일, 기준점이 실현된 확률변수값의 평균으로 표현되는 경우는 그리스문자 $\sigma^2$로 표기합니다. 기준점이 기대값으로 표현되는 경우는 분산은 ${\rm Var}[X]$로 표기합니다.

$$\sigma_X^2={\rm Var}[X]={\rm E}[(X-\mu)^2]={\rm E}[X^2]-\mu_X^2$$

여기서,  ${\rm E}[X^2]=\sum\limits_{all \, X}x^2f(x)$

이산형 확률변수의 분산

$${\rm Var}[X]=\sum_{all \, X}(x-\mu)^2f(x)$$

연속형 확률변수의 분산

$${\rm Var}[X]=\int_{-\infty}^{\infty}(x-\mu)^2f(x)dx$$

Terminology

시행

확률이론에서, 실험이나 시행은 무한히 반복되어 행해 질 수 있고 표본공간으로 알려진 가능한 모든 결과의 집합을 얻는 과정을 말합니다. 실험은 하나 이상의 결과가 있을 경우는 “무작위”로, 하나만 있는 경우는 “결정적”으로 표현합니다. 예를 들면, 2 가지(결과는 상호 배타적) 가능한 결과를 갖는 무작위 실험은 베르누이 시험이 있습니다.

실험이 수행 될 때, 시행의 결과는 보통 하나로 나타납니다. 그 결과는 모든 사건에 포함됩니다. 이 모든 사건은 시행에서 발생했다고 말합니다. 같은 실험을 여러 번 수행하고 결과를 모으고 나면 실험자는 실험에서 발생할 수 있는 다양한 결과 및 사건의 경험적 확률을 평가하고 통계분석방법을 적용할 수 있습니다.

출처

Experiment (probability theory) – Wikipedia

확률

확률은 사건이 일어날 가능성을 정량화하는 척도입니다. 확률은 0에서 1 사이의 숫자로 정량화됩니다. 여기서, 0은 불가능함을 나타내며 1은 확실함을 나타냅니다. 시행(event)의 확률이 높을수록 시행이 발생할 가능성이 큽니다. 간단한 예가 동전 던지기입니다. 동전 던지기는 결과가 명확하게 두 가지 결과인 “앞면(Head)”와 “뒷면(Tale)”으로 나타납니다. 그리고 쉽게 앞면과 뒷면의 확률은 동일하다고 동의가 이루어집니다. 다른 결과가 없기 때문에 “앞면”또는 뒷면”의 확률은 1/2 (0.5 또는 50 %)입니다.

이러한 확률개념은 수학, 통계, 금융, 도박, 과학 (특히 물리학), 인공지능, 기계 학습, 컴퓨터 과학, 게임 이론 등과 같은 분야에 공리적 수학적 형식화를 제공합니다. 빈도에 관한 추정을 이끌어내거나 복잡한 시스템의 기본 역학 및 규칙성을 기술하는 데에도 사용됩니다.

출처

Probability – Wikipedia

확률분포

확률이론 및 통계에서 확률분포는 실험에서 가능하고 서로 다른 모든 결과의 출현 확률을 제공하는 수학적 기능입니다. 보다 기술적인 측면에서, 확률분포는 사건의 확률의 관점에서 임의의 현상에 대한 기술입다. 예를 들어, 확률 변수 $X$가 동전 던지기( “실험”) 결과를 나타내는 데 사용되면 $X$의 확률 분포는 $X$ = 앞면의 경우 0.5, $X$ = 뒷면의 경우 0.5를 취합니다( 동전은 공정). 임의의 현상의 예에는 실험이나 조사의 결과가 포함될 수 있습니다.

확률분포는 관찰되는 임의의 현상의 모든 가능한 결과 집합인 기본 표본공간(sample space)의 관점에서 지정됩니다. 표본공간은 실수 집합 또는 벡터 집합일 수도 있고 비 숫자 값 목록일 수도 있습니다. 예를 들어, 동전 뒤집기의 샘플 공간은 {앞면(Head), 뒷면(Tail)}입니다. 확률 분포는 일반적으로 두 가지로 나뉩니다. 이산 확률분포 (동전 던지기 나 주사위와 같이 가능한 결과 집합이 불연속인 시나리오에 적용 가능)는 확률질량함수라고하는 결과의 확률에 대한 개별 목록으로 표시할 수 있습니다. 반면, 연속확률분포 (주어진 날의 온도와 같이 연속적인 범위 (예 : 실수)의 값을 취할 수 있는 시나리오에 적용 가능)는 일반적으로 확률 밀도함수 (임의의 개별 결과가 실제로는 0인 확률)로 표현할 수 있습니다. 정규 분포는 일반적으로 자주 나타나는 연속확률분포입니다. 지속적인 시간에 정의 된 확률론적 과정과 관련된 복잡한 실험은 더 일반적인 확률측정법의 사용을 요구할 수 있습니다.

표본공간이 1차원인 확률분포 (예 : 실수, 레이블 목록, 정렬된 레이블 또는 이진수)는 단 변수이라고 불리우는 반면 표본공간이 2차원  이상의 벡터 공간 인 분포를 다 변수라고합니다. 단일 변수(변량) 분포는 다양한 대체 값을 취하는 단일 확률변수의 확률을 제공합니다. 다 변수 분포 (합동확률분포)는 다양한 값의 조합을 취하는 임의의 벡터 (두 개 이상의 임의변수를 원소로 가짐)의 확률을 제공합니다. 중요하고 공통적으로 발생하는 단 변량 확률분포에는 이항분포, 초기 하분포 및 정규분포가 포함됩니다. 다 변수 정규 분포는 일반적으로 발생하는 다 변수 분포입니다.

출처

Probability distribution – Wikipedia

연속, 불연속 변수

수학에서 변수는 연속이거나 이산일 수 있습니다. 두 개의 특정 실제 값 (예 : 임의의 가까운 값) 사이의 모든 실제 값을 취할 수 있는 경우 변수는 해당 간격에서 연속입니다. 변수가 가질 수 있는 값을 포함하지 않는 극한의 간격이 양측에 존재하는 값을 취할 수 있다면, 그 변수값을 중심으로 변수는 분리되고 그 변수는 이산형 변수입니다. 일부 상황에서는 변수가 선상의 일부 범위에서 이산이고 다른 변수에서는 연속일 수 있습니다.

출처

Continuous or discrete variable – Wikipedia

확률변수

확률이론 및 통계에서 임의의 양, 임의의 변수, 즉 확률변수는 비공식적으로 값이 임의의 현상의 결과에 의존하는 변수로 설명됩니다. 확률변수에 대한 공식적인 수학적 설명은 확률이론의 주제입니다. 그 맥락에서, 확률변수는 결과가 일반적으로 실수인 확률공간에서 정의된 측정 가능한 함수로 이해할 수 있습니다.

확률변수의 가능한 값은 아직 수행되지 않은 실험의 가능한 결과 또는 이미 존재하는 값 불확실한 과거 실험의 가능한 결과인 경우를 나타내는 이미 존재하는 값으로 나타낼 수 있습니다 (예 : 부정확한 측정 또는 양자 불확실성으로 인해). 그들은 또한 개념적으로 “객관적”무작위 과정의 결과 또는 양에 대한 불완전한 지식으로 인한 “주관적인”무작위성”을 나타낼 수 있습니다. 확률변수의 잠재 가치에 할당된 확률의 의미는 확률 이론 자체의 일부가 아니며 확률의 해석에 대한 철학적 주장과 관련이 있습니다. 수학은 사용되는 특정 해석과 상관없이 동일하게 작동합니다.

함수로서 확률변수는 측정 가능해야 하며 확률은 잠재가치 집합으로 표현할 수 있습니다. 결과는 예측할 수 없는 몇 가지 물리적 변수에 달려 있을 수 있습니다. 예를 들어, 공정한 동전 던지기의 경우, 앞면 또는 뒷면의 최종 결과는 불확실한 동전의 물리적 조건에 달려 있습니다. 관찰되는 결과는 확실하지 않습니다. 동전의 표면에 균열이 생길 수 있지만 이러한 가능성은 고려 대상에서 제외됩니다.

확률변수의 존재 지역은 표본공간이며 임의의 현상의 가능한 결과의 집합으로 해석됩니다. 예를 들어, 동전 던지기의 경우 두 가지 가능한 결과, 즉 앞면 또는 뒷면이 그러합니다.

확률변수는 확률분포를 가지며, 확률분포는 확률변수의 확률값을 지정합니다. 무작위 변수는 이산형일 수 있습니다. 즉, 임의의 변수의 확률분포의 확률 질량함수 특성이 부여된 유한한 값 또는 계산 가능한 값에서 하나를 취합니다. 또는 임의의 변수의 확률분포의 특징 인 확률밀도함수를 통해 간격 또는 연속된간격에서 임의의 수치 값을 취하는 연속 또는 두 유형의 혼합물 일 수 있습니다.

동일한 확률분포를 갖는 두 개의 확률 변수는 다른 확률 변수와의 관련성 또는 독립성 측면에서 다를 수 있습니다. 무작위 변수의 실현, 즉 변수의 확률분포 함수에 따라 무작위로 값을 선택한 결과를 무작위 변수라고 합니다.

출처

Random variable – Wikipedia

[Related DATA SCIENCE]

Quiz

1. “로또복권의 등수”는 어떤 유형의 확률변수인가요? 3 중

  1. 이산형 확률변수
  2. 연속형 확률변수
  3. 범주형 확률변수
  4. 명목형 확률변수

2. 확률변수에서 확률을 표현하는 변수값의 집합은 무엇이라고 하나요? 2 상

  1. 확률분포
  2. 지지집합
  3. 표본공간
  4. 기저사건

3. 동전을 던져서 나온 윗면의 확률변수값은 무엇이 될 수 있나요? 2 하

  1. 0과 1
  2. 앞면과 뒷면
  3. 숫자 3
  4. 색상

4. 베르누이 시행은 무엇을 의미하나요? 1 중

  1. 두 가지 결과만 가능한 시행
  2. 무한한 결과를 가진 시행
  3. 연속형 확률분포를 가진 시행
  4. 항상 100% 성공하는 시행

5. 동전 던지기에서 “0 또는 1이 나오는 사건”의 확률은 무엇인가요? 3 중

  1. 0
  2. 0.5
  3. 1
  4. 2

6. 범주형 확률변수의 예로 적합한 것은 무엇인가요? 2 하

  1. 주사위의 숫자
  2. 동전의 앞면과 뒷면
  3. 온도계의 온도
  4. 시간

7. 연속형 확률변수의 예로 적합한 것은 무엇인가요? 3 중

  1. 동전 던지기의 결과
  2. 육각 주사위의 숫자
  3. 태양빛의 파장
  4. 로또 당첨 등수

8. 범주형 확률변수의 확률변수값은 어떤 속성을 나타내나요? 1 중

  1. 질적 속성
  2. 양적 속성
  3. 이산형 속성
  4. 연속형 속성

9. 연속형 확률변수의 확률분포를 표현하는 함수를 모두 고르면? 3 상

가. 확률질량함수, 나. 이산균등함수,

다. 확률밀도함수, 라. 누적분포함수

  1. 가, 나
  2. 나, 다
  3. 다, 라
  4. 가, 라

10. 확률변수에서 시행을 무한히 반복했을 때 나타난 시행결과의 평균을 무엇이라 하나요? 4 중

  1. 상수
  2. 기저사건
  3. 확률밀도
  4. 기대값